オプトクエスト技術レポート

No.001

1064nm マイクロチップレーザの開発と応用

High pulse-energy microchip lasers and their applications

株式会社オプトクエスト 技術開発第2部 2020年5月24日

1.はじめに

Nd:YAG などのレーザ結晶にミラーコーティングを施 して、モノリシックに構成される小型のレーザが 1980 年代後半に提案され、1989 年には CW 発振が、1994 年 には受動 Q スイッチによるパルス発振が実現されてい る¹⁾²⁾。このようなレーザはマイクロチップレーザと呼ば れているが、構成部品が少なく、外乱に対してロバスト であるといった長所を持ち、低価格でコンパクトなレー ザを実現する候補として盛んに研究が進められてきた。 また、2006 年には自然科学研究機構分子科学研究所のグ ループにより、ミリジュールを超える高いパルスエネル ギーのサブナノ秒パルスを発生させる基本技術が確立し、 以降、同グループを中心とした研究によりに急速な高強 度化を遂げている ³⁾⁻⁵。

我々は、内閣府総合科学技術・イノベーション会議が 主導する革新的研究開発推進プログラム(ImPACT)「ユ ビキタス・パワーレーザーによる安心・安全・長寿社会 の実現」の支援を受け、同プログラムで開発された高出 カマイクロチップレーザの製品化開発を 2017 年度より 進めてきた 607)。本稿では、高出力マイクロチップレーザ の動作原理について簡単に説明し、弊社で開発を進めて いるレーザとその応用例を紹介する。

2. マイクロチップレーザの基本構成と動作原理

ここでは波長 1064nm で動作する受動 Q スイッチマ イクロチップレーザを例にとり、基本構成と動作原理を 説明する。図 1 に示すように、レーザ媒質としては Nd³⁺:YAG 結晶を用い、結晶端面に施された波長

1064nmの高反射率誘電体多層膜と別体の部分反射ミラ ーとでレーザ共振器を構成する。また、内部に Cr4+:YAG 結晶を挿入し、パルス発生のための光スイッチとして作 用させる。Cr:4+YAG は入射光量が低い間は比較的高い 吸収を示すが、入射光量が高くなると透明化し、透過率 が高くなるという性質を持つ(可飽和吸収)。このレーザ 共振器を図1のように波長808nmの励起光により端面 励起すると、Nd³⁺:YAG 結晶内に反転分布が形成されて 利得が生じるが、励起開始直後は Cr:4+YAG の高い吸収 によりレーザは発振できない。しかし、この間に Nd³⁺:YAG 結晶は励起され続けるので、結晶内部の反転 分布密度は高くなり、利得(エネルギー)が蓄積され、 それとともに共振器内の光量が徐々に増加する。そして、 共振器内の光量がある程度高くなったところで Cr:4+YAG が透明化し、レーザ発振して蓄積されていた エネルギーが短時間の間に放出され、波長 1064nm の短 光パルスとなって出力される。(Cr4+:YAGの可飽和吸収 作用により共振器のQ値を変化(スイッチ)させてパル スを形成することから、受動 Q スイッチ動作と呼ばれ る。)

出力される光パルスの時間幅は、共振器長に比例して 短くなる ⁵⁾⁸⁾。図1のような構成では、結晶長と同程度ま で共振器長を短くすることができ、長さ 10mm 以下の短 共振器を構成することも容易である。この場合、パルス 時間幅としては、500~700psec 程度が得られる。また、 図1では、Nd³⁺:YAG、Cr:4+YAG、エンドミラーを別体 として表示しているが、接合技術を用いてモノリシック に構成すれば非常にコンパクトなパルスレーザが実現可 能である ³⁾。

発生するパルスエネルギーは、Nd3+:YAGのNd濃度、

1

Cr:4+YAG の初期透過率、エンドミラーの反射率等、多く のパラメータによって決まるが、最適化することにより サブナノ秒でミリジュールクラスのパルスエネルギーを 得ることが可能となっている 4)5)。また、横モード (ビー ム形状)は、共振器内部の発振モードに依存するが、マ イクロチップレーザの場合、結晶内部で発生した熱によ る熱レンズ効果を有効に利用して、発振モードを形成す ることが多い。このため、結晶内部の温度分布の制御は 非常に重要である。高いパルスエネルギーを発生させる 場合は内部の強い熱レンズの影響を受けるため、ビーム 品質は一般的に悪くなる。(この他、内部の熱複屈折によ り偏光度が著しく劣化するといった問題もある。)この問 題に対処するために、結晶自体に冷却構造を導入する方 法が提案され、良好なビーム品質を保ちながら 20mJを 超える高いパルスエネルギーが得られている 9。また、 マイクロチップレーザのように高いエネルギーがコンパ クトな共振器内に閉じ込められる場合は、内部のレーザ 媒質等の損傷が問題となるが、結晶を光学セラミックス 材料に置き換えることにより耐性を向上し、更なる高出 力化が指向されている³⁾。

図1 受動 Q スイッチマイクロチップレーザの基本構成

3. 開発した高出力マイクロチップレーザの性能

図2に試作したマイクロチップレーザの構成とヘッド 部の外観を示す。波長 808nm の半導体レーザからのフ ァイバ導光された励起光を2枚のレンズでNd³⁺:YAG 結 晶内部で集光している。共振器は、Nd³⁺:YAG の端面に 施された1064nm高反射誘電体多層膜と部分反射ミラー により構成され、部分反射ミラー側から出力パルスが取 り出される。また、両端を1064nm帯で無反射コーティ ングした Cr:4+YAG 結晶を挿入し、受動 Q スイッチ動作 を実現する。共振器長は約 10mm であり、共振器全体を ペルチエ素子により温度一定制御している。図 2 はレー ザ共振部を含むヘッドの外観であるが、サイズ 30mm x 40mm x 125mm (突起部除く)のコンパクトな筐体内に 励起光学系、レーザ共振器、ペルチエ素子を収めている。 また、内部の光学部品はスポット溶接により固定されて おり、調整箇所のない安定な共振器を構成している。

図3高出力マイクロチップレーザ試作機のビームプロ ファイル(3.7mJ, 100Hz)

本試作機の出力パルスエネルギーは 3.7mJ、繰り返し 周波数 100Hz であり、コンパクトなヘッドにもかかわら ず、非常に高いエネルギーの光パルスを得ることができ る。図 3 に出力ビームのプロファイルを示す。中央部は 真円に近い良好なビーム形状が得られている一方で、熱

2

オプトクエスト技術レポート No. 001

レンズの影響による裾部の広がりと楕円化がみられる。 パルス時間幅は 700psec(半値全幅)であり、パルス波 形は安定である。パワー安定性についても、起動開始の 数パルス分を除いては非常に安定で、1 時間で 0.5%rms 程度である。ポインティングスタビリティも±10 µ rad (1 時間、ヘッド静置時)と良好である。

4. 開発したマイクロチップレーザの応用

開発したマイクロチップレーザは、サブナノ秒のパル ス幅でミリジュールを超える光パルスが得られており、 ピークパワーはメガワットを超える。このため、照射対 象物によっては、集光しない状態でもアブレーションが 観測されるほか、集光状態では空中でのブレークダウン 現象を観察することも可能である。用途としては、従来 のレーザ加工だけでなく、レーザ点火、レーザ超音波探 傷などの先端計測、皮膚治療などの美容・医療分野への 応用が検討されている。

また、手のひらサイズのレーザヘッドからミリジュー ルクラスのパルスエネルギーが得られることから、レー ザ自体を直接ロボットアームに搭載して対象物に直接照 射するような使い方も可能になると思われる。ここでは、 大阪大学浅井研究室で進められている革新的スマート溶 接システムへの応用について紹介する 10)。図4にその検 証試験の様子を示すが、アーク溶接の状態をリアルタイ ムにモニタすることが可能な溶接システムであり、溶接 と検査工程(補修)を同時に行うインプロセス計測を目 標としている。溶接状態のモニタとしてレーザ超音波法 を用いているが、超音波を加振するための光源として開 発したマイクロチップレーザが使用されている。従来の mJ クラスの固体レーザではサイズ・重量の問題があり、 ロボットアームに搭載するのも困難であったが、本機の ような手のひらサイズのヘッドでは、図4のように溶接 ヘッドに直接搭載することが可能である。これにより現 場で溶接しながら内部の欠陥等を検知するインプロセス 計測がデモンストレーションされている。10)

以上のように、従来のレーザにはない性質を持つこと から、前述した ImPACT プログラム内でも数多くのア プリケーション開発がなされている⁶⁷⁷。これらの新しい

図 4 革新的スマート溶接システムへの適用例(写真 提供: 大阪大学大学院工学系研究科浅井研究室)

項目	仕様
波長	1064nm
パルスエネルギー	>2.5mJ
繰り返し周波数	20-100Hz
パルス幅	<1nsec
冷却方式	空冷(ペルチエ)
偏波	直線偏波

図5 開発中のマイクロチップレーザの外観と仕様

応用の開拓に貢献すべく、弊社ではレーザ使用経験の少 ないユーザでも簡単に使用できるような製品機の開発を 進めている。図 5 に ImPACT プログラム期間中に開発 した試作機の外観と仕様(暫定)を示す。

3

5. むすび

弊社で開発した高出力マイクロチップレーザについて 紹介した。コンパクトなサイズでありながら、従来の大 型固体レーザでしか出せなかったような高いパルスエネ ルギーを発生させることが可能であり、サブナノ秒パル ス特有の高いフルエンスによる新しいアプリケーション が生まれつつある。今後は、従来のレーザの単なる置き 換えだけでなく、新しいレーザの使い方の開拓を期待し たい。

謝辞

本報告は、総合科学技術・イノベーション会議が主導 する革新的研究開発推進プログラム(ImPACT)の一環 として実施された成果です。本開発においてご協力・ご 指導を賜りました理化学研究所/自然科学研究機構分子 科学研究所 平等拓範教授、川崎泰介様、自然科学研究機 構分子科学研究所 佐野雄二様、東芝エネルギーシステ ムズ株式会社 三浦崇広様、大阪大学大学院工学系研究科 マテリアル生産科学専攻浅井知教授、野村和史助教に謝 意を表します。

執筆

株式会社オプトクエスト 技術開発第2部

参考文献

- J. J. Zayhowski and A. Mooradian, "Singlefrequency microchip Nd lasers," *Opt. Lett.*, vol., 14, no. 1, pp. 24-26, 1989.
- [2] J. J. Zayhowski and C. Dill, "Diode-pumped passively Q-switched picosecond microchip lasers," *Opt. Lett.*, vol. 19, no. 18, pp. 1427-1429, 1994.
- [3] T. Taira, "Domain-controlled laser ceramics toward giant micro-photonics [invited]," Opt. Mater. Express, vol. 1, no. 5, pp. 1040-1050, 2011.
- [4] T. Taira, Y. Matsuoka, H. Sakai, A. Sone, and H. Kan, "Passively Q-switched Nd:YAG microchip laser over 1-MW peak output power for micro drilling," in *Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science*

Conference and Photonic Applications Systems Technologies, Technical Digest, paper CWF6, 2006.

- [5] H. Sakai, H. Kan, and T. Taira, ">1MW peak power single-mode high-brightness passively Qswitched Nd:YAG microchip laser," *Opt. Express*, vol. 16, no. 24, pp. 19891-19899, 2008.
- [6] 佐野、"ユビキタス・パワーレーザーによる産業と科
 学技術の振興、"オプトロニクス, no.4, pp. 140-141, 2018.
- [7] 佐野、三浦、北村、"ImPACT プログラムにおけるマ イクロチップレーザ製品化と適用技術開発,"第90 回レーザ加工学会講演論文集, pp. 139-143, 2018.
- [8] J. J. Degnan, "Optimization of passively Q-switched lasers," *IEEE J. Quantum Electron.*, vol. 31, no. 11, pp. 1890-1901, 1995.
- [9] L. Zheng, A. Kausas and T. Taira, "Drastic thermal effects reduction through distributed face cooling in a high power giant tiny laser," *Opt. Mat. Express*, vol. 7, no. 9, pp 3214-3221, 2017.
- [10] 浅井知, "革新的スマート溶接システムの開発," 溶 接技術, vol. 65, No. 8, pp107-111, 2017.

オプトクエスト技術レポート No.001

4